Serveur d'exploration Santé et pratique musicale

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Complete cross-frequency transfer of tone frequency learning after double training.

Identifieur interne : 000332 ( Main/Exploration ); précédent : 000331; suivant : 000333

Complete cross-frequency transfer of tone frequency learning after double training.

Auteurs : Ying-Zi Xiong ; Ding-Lan Tang ; Yu-Xuan Zhang ; Cong Yu

Source :

RBID : pubmed:31157531

Descripteurs français

English descriptors

Abstract

A person's ability to discriminate fine differences in tone frequency is vital for everyday hearing such as listening to speech and music. This ability can be improved through training (i.e., tone frequency learning). Depending on stimulus configurations and training procedures, tone frequency learning can either transfer to new frequencies, which would suggest learning of a general task structure, or show significant frequency specificity, which would suggest either changes in neural representations of trained frequencies, or reweighting of frequency-specific neural responses. Here we tested the hypothesis that frequency specificity in tone frequency learning can be abolished with a double-training procedure. Specifically, participants practiced tone frequency discrimination at 1 or 6 kHz, presumably encoded by different temporal or place coding mechanisms, respectively. The stimuli were brief tone pips known to produce significant specificity. Tone frequency learning was indeed initially highly frequency specific (Experiment 1). However, with additional exposure to the other untrained frequency via an irrelevant temporal interval discrimination task, or even background play during a visual task, learning transferred completely (1-to-6 kHz or 6-to-1 kHz; Experiments 2-4). These results support general task structure learning, or concept learning in our term, in tone frequency learning despite initial frequency specificity. They also suggest strategies to design efficient auditory training in practical settings. (PsycINFO Database Record (c) 2019 APA, all rights reserved).

DOI: 10.1037/xge0000619
PubMed: 31157531


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Complete cross-frequency transfer of tone frequency learning after double training.</title>
<author>
<name sortKey="Xiong, Ying Zi" sort="Xiong, Ying Zi" uniqKey="Xiong Y" first="Ying-Zi" last="Xiong">Ying-Zi Xiong</name>
<affiliation>
<nlm:affiliation>School of Psychological and Cognitive Sciences, IDG/McGovern Institute for Brain Research.</nlm:affiliation>
<wicri:noCountry code="subField">IDG/McGovern Institute for Brain Research</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Tang, Ding Lan" sort="Tang, Ding Lan" uniqKey="Tang D" first="Ding-Lan" last="Tang">Ding-Lan Tang</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of Cognitive Neuroscience and Learning.</nlm:affiliation>
<wicri:noCountry code="no comma">State Key Laboratory of Cognitive Neuroscience and Learning.</wicri:noCountry>
<wicri:noCountry code="no comma">State Key Laboratory of Cognitive Neuroscience and Learning.</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Yu Xuan" sort="Zhang, Yu Xuan" uniqKey="Zhang Y" first="Yu-Xuan" last="Zhang">Yu-Xuan Zhang</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of Cognitive Neuroscience and Learning.</nlm:affiliation>
<wicri:noCountry code="no comma">State Key Laboratory of Cognitive Neuroscience and Learning.</wicri:noCountry>
<wicri:noCountry code="no comma">State Key Laboratory of Cognitive Neuroscience and Learning.</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Yu, Cong" sort="Yu, Cong" uniqKey="Yu C" first="Cong" last="Yu">Cong Yu</name>
<affiliation>
<nlm:affiliation>School of Psychological and Cognitive Sciences, IDG/McGovern Institute for Brain Research.</nlm:affiliation>
<wicri:noCountry code="subField">IDG/McGovern Institute for Brain Research</wicri:noCountry>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:31157531</idno>
<idno type="pmid">31157531</idno>
<idno type="doi">10.1037/xge0000619</idno>
<idno type="wicri:Area/Main/Corpus">000496</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000496</idno>
<idno type="wicri:Area/Main/Curation">000496</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000496</idno>
<idno type="wicri:Area/Main/Exploration">000496</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Complete cross-frequency transfer of tone frequency learning after double training.</title>
<author>
<name sortKey="Xiong, Ying Zi" sort="Xiong, Ying Zi" uniqKey="Xiong Y" first="Ying-Zi" last="Xiong">Ying-Zi Xiong</name>
<affiliation>
<nlm:affiliation>School of Psychological and Cognitive Sciences, IDG/McGovern Institute for Brain Research.</nlm:affiliation>
<wicri:noCountry code="subField">IDG/McGovern Institute for Brain Research</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Tang, Ding Lan" sort="Tang, Ding Lan" uniqKey="Tang D" first="Ding-Lan" last="Tang">Ding-Lan Tang</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of Cognitive Neuroscience and Learning.</nlm:affiliation>
<wicri:noCountry code="no comma">State Key Laboratory of Cognitive Neuroscience and Learning.</wicri:noCountry>
<wicri:noCountry code="no comma">State Key Laboratory of Cognitive Neuroscience and Learning.</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Yu Xuan" sort="Zhang, Yu Xuan" uniqKey="Zhang Y" first="Yu-Xuan" last="Zhang">Yu-Xuan Zhang</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of Cognitive Neuroscience and Learning.</nlm:affiliation>
<wicri:noCountry code="no comma">State Key Laboratory of Cognitive Neuroscience and Learning.</wicri:noCountry>
<wicri:noCountry code="no comma">State Key Laboratory of Cognitive Neuroscience and Learning.</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Yu, Cong" sort="Yu, Cong" uniqKey="Yu C" first="Cong" last="Yu">Cong Yu</name>
<affiliation>
<nlm:affiliation>School of Psychological and Cognitive Sciences, IDG/McGovern Institute for Brain Research.</nlm:affiliation>
<wicri:noCountry code="subField">IDG/McGovern Institute for Brain Research</wicri:noCountry>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Journal of experimental psychology. General</title>
<idno type="eISSN">1939-2222</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Acoustic Stimulation (methods)</term>
<term>Adult (MeSH)</term>
<term>Discrimination Learning (physiology)</term>
<term>Female (MeSH)</term>
<term>Humans (MeSH)</term>
<term>Male (MeSH)</term>
<term>Music (MeSH)</term>
<term>Pitch Discrimination (physiology)</term>
<term>Speech (MeSH)</term>
<term>Young Adult (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Adulte (MeSH)</term>
<term>Apprentissage discriminatif (physiologie)</term>
<term>Discrimination de la hauteur tonale (physiologie)</term>
<term>Femelle (MeSH)</term>
<term>Humains (MeSH)</term>
<term>Jeune adulte (MeSH)</term>
<term>Musique (MeSH)</term>
<term>Mâle (MeSH)</term>
<term>Parole (MeSH)</term>
<term>Stimulation acoustique (méthodes)</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Acoustic Stimulation</term>
</keywords>
<keywords scheme="MESH" qualifier="méthodes" xml:lang="fr">
<term>Stimulation acoustique</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Apprentissage discriminatif</term>
<term>Discrimination de la hauteur tonale</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Discrimination Learning</term>
<term>Pitch Discrimination</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Adult</term>
<term>Female</term>
<term>Humans</term>
<term>Male</term>
<term>Music</term>
<term>Speech</term>
<term>Young Adult</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Adulte</term>
<term>Femelle</term>
<term>Humains</term>
<term>Jeune adulte</term>
<term>Musique</term>
<term>Mâle</term>
<term>Parole</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">A person's ability to discriminate fine differences in tone frequency is vital for everyday hearing such as listening to speech and music. This ability can be improved through training (i.e., tone frequency learning). Depending on stimulus configurations and training procedures, tone frequency learning can either transfer to new frequencies, which would suggest learning of a general task structure, or show significant frequency specificity, which would suggest either changes in neural representations of trained frequencies, or reweighting of frequency-specific neural responses. Here we tested the hypothesis that frequency specificity in tone frequency learning can be abolished with a double-training procedure. Specifically, participants practiced tone frequency discrimination at 1 or 6 kHz, presumably encoded by different temporal or place coding mechanisms, respectively. The stimuli were brief tone pips known to produce significant specificity. Tone frequency learning was indeed initially highly frequency specific (Experiment 1). However, with additional exposure to the other untrained frequency via an irrelevant temporal interval discrimination task, or even background play during a visual task, learning transferred completely (1-to-6 kHz or 6-to-1 kHz; Experiments 2-4). These results support general task structure learning, or concept learning in our term, in tone frequency learning despite initial frequency specificity. They also suggest strategies to design efficient auditory training in practical settings. (PsycINFO Database Record (c) 2019 APA, all rights reserved).</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" IndexingMethod="Curated" Owner="NLM">
<PMID Version="1">31157531</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>03</Month>
<Day>30</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>03</Month>
<Day>30</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1939-2222</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>149</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2020</Year>
<Month>Jan</Month>
</PubDate>
</JournalIssue>
<Title>Journal of experimental psychology. General</Title>
<ISOAbbreviation>J Exp Psychol Gen</ISOAbbreviation>
</Journal>
<ArticleTitle>Complete cross-frequency transfer of tone frequency learning after double training.</ArticleTitle>
<Pagination>
<MedlinePgn>94-103</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1037/xge0000619</ELocationID>
<Abstract>
<AbstractText>A person's ability to discriminate fine differences in tone frequency is vital for everyday hearing such as listening to speech and music. This ability can be improved through training (i.e., tone frequency learning). Depending on stimulus configurations and training procedures, tone frequency learning can either transfer to new frequencies, which would suggest learning of a general task structure, or show significant frequency specificity, which would suggest either changes in neural representations of trained frequencies, or reweighting of frequency-specific neural responses. Here we tested the hypothesis that frequency specificity in tone frequency learning can be abolished with a double-training procedure. Specifically, participants practiced tone frequency discrimination at 1 or 6 kHz, presumably encoded by different temporal or place coding mechanisms, respectively. The stimuli were brief tone pips known to produce significant specificity. Tone frequency learning was indeed initially highly frequency specific (Experiment 1). However, with additional exposure to the other untrained frequency via an irrelevant temporal interval discrimination task, or even background play during a visual task, learning transferred completely (1-to-6 kHz or 6-to-1 kHz; Experiments 2-4). These results support general task structure learning, or concept learning in our term, in tone frequency learning despite initial frequency specificity. They also suggest strategies to design efficient auditory training in practical settings. (PsycINFO Database Record (c) 2019 APA, all rights reserved).</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Xiong</LastName>
<ForeName>Ying-Zi</ForeName>
<Initials>YZ</Initials>
<AffiliationInfo>
<Affiliation>School of Psychological and Cognitive Sciences, IDG/McGovern Institute for Brain Research.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Tang</LastName>
<ForeName>Ding-Lan</ForeName>
<Initials>DL</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Cognitive Neuroscience and Learning.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Yu-Xuan</ForeName>
<Initials>YX</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Cognitive Neuroscience and Learning.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Yu</LastName>
<ForeName>Cong</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>School of Psychological and Cognitive Sciences, IDG/McGovern Institute for Brain Research.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<Agency>Natural Science Foundation of China</Agency>
<Country></Country>
</Grant>
<Grant>
<Agency>Peking-Tsinghua Center for Life Sciences</Agency>
<Country></Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>06</Month>
<Day>03</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Exp Psychol Gen</MedlineTA>
<NlmUniqueID>7502587</NlmUniqueID>
<ISSNLinking>0022-1015</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000161" MajorTopicYN="N">Acoustic Stimulation</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000328" MajorTopicYN="N">Adult</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004193" MajorTopicYN="N">Discrimination Learning</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009146" MajorTopicYN="N">Music</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010897" MajorTopicYN="N">Pitch Discrimination</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013060" MajorTopicYN="N">Speech</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055815" MajorTopicYN="N">Young Adult</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>6</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>3</Month>
<Day>31</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>6</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31157531</ArticleId>
<ArticleId IdType="pii">2019-30034-001</ArticleId>
<ArticleId IdType="doi">10.1037/xge0000619</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list></list>
<tree>
<noCountry>
<name sortKey="Tang, Ding Lan" sort="Tang, Ding Lan" uniqKey="Tang D" first="Ding-Lan" last="Tang">Ding-Lan Tang</name>
<name sortKey="Xiong, Ying Zi" sort="Xiong, Ying Zi" uniqKey="Xiong Y" first="Ying-Zi" last="Xiong">Ying-Zi Xiong</name>
<name sortKey="Yu, Cong" sort="Yu, Cong" uniqKey="Yu C" first="Cong" last="Yu">Cong Yu</name>
<name sortKey="Zhang, Yu Xuan" sort="Zhang, Yu Xuan" uniqKey="Zhang Y" first="Yu-Xuan" last="Zhang">Yu-Xuan Zhang</name>
</noCountry>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SanteMusiqueV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000332 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000332 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SanteMusiqueV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:31157531
   |texte=   Complete cross-frequency transfer of tone frequency learning after double training.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:31157531" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a SanteMusiqueV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Mon Mar 8 15:23:44 2021. Site generation: Mon Mar 8 15:23:58 2021